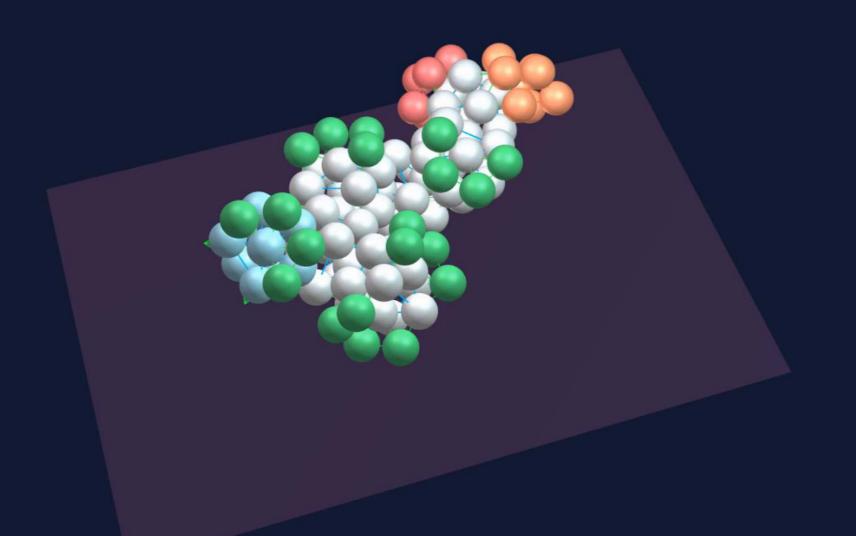
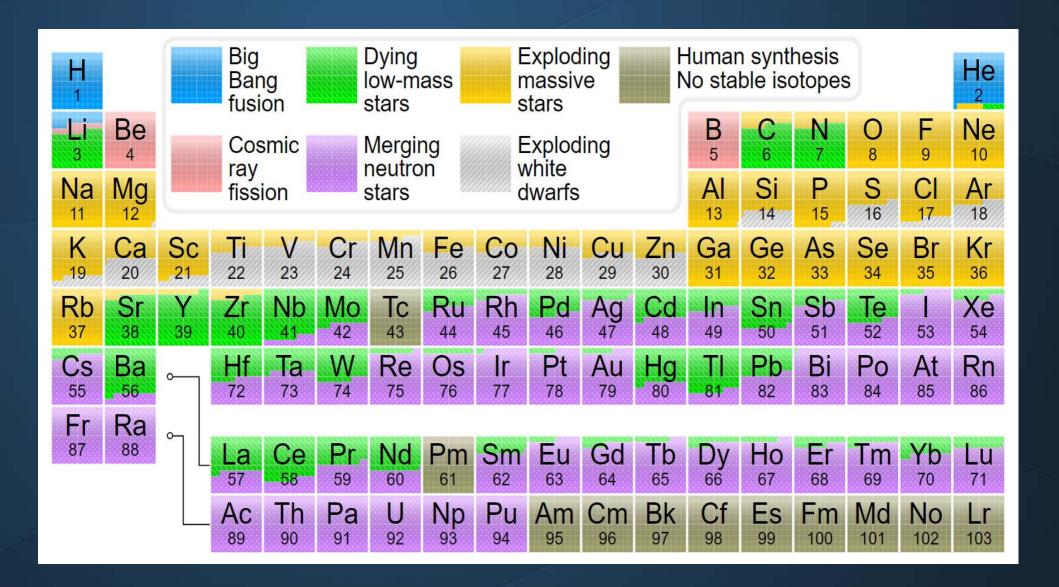

"The Nature of the Elements"

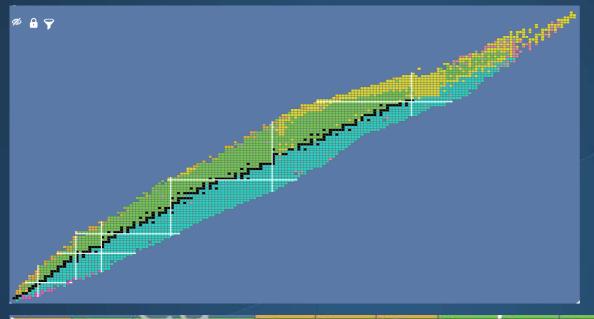

Metals, Non-metals and Inert Gases

Metals, Non-metals and Inert Gases

1																	0
Hydrogen 3	1											5	6	7	Ω	9	Helium 10
1	2											3	-11 °	-35	-2 °	_1	0
1 itheir res													Corbon	-33		Fluorino	Noon
Lithium 11	Beryllium 12											Boron 13	Carbon 14	Nitrogen 15	Oxygen 16	Fluorine 17	Neon 18
1	2											3	-44	-335	-26	-1	0
Sodium	Magnesium											Aluminum	Silicon	Phosphorus	Sulfur	Chlorine	Argon
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
1	2	3	4	345	236	247	23	23	2	12	2	3	4	35	-24	-1	0
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
1	2	3	4	5	46	47	34	3	24	1	2	3	-42	-335	-2246	-15	0
Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	lodine	Xenon
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
1	2		4	5	46	345	4	34	24	3	12	13	2	13	4	-1	0
Cesium	Barium		Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
87	88		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
1	2		4														
Francium	Radium		Rutherfordium	Dubnium	Seaborgium	Bhorium	Hassium	Meitnerium	Darmstadtium	Roentgenium	Copernicium	Nihonium	Flerovium	Moscovium	Livermorium	Tessessine	Oganesson
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
		3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
		Lathanum	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium	
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
		3	4	5	6	7	47	3	3	3	3	3	3	3	2	3	
			Thorium			Neptunium											
		Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium	

Tin 114




hydrogen	н					-1		+1								i
helium	He						7.7	0000000								İ
lithium	Li							+1								İ
beryllium	Be						0	+1	+2							İ
boron	В	-6				-1	0	+1	+2	+3						İ
carbon	С		-4	-3	-2	-1	0	+1	+2	+3	+4					İ
nitrogen	N			-3	-2	-1		+1	+2	+3	+4	+5				İ
oxygen	0				-2	-1	0	+1	+2							İ
fluorine	F					-1										İ
neon	Ne															İ
sodium	Na					-1		+1								
magnesium	Mg							+1	+2							İ
aluminium	Al				-2	-1		+1	+2	+3						
silicon	Si		-4	-3	-2	-1	0	+1	+2	+3	+4					
phosphorus	Р			-3	-2	-1	0	+1	+2	+3	+4	+5				İ
sulfur	5				-2	-1	0	+1	+2	+3	+4	+5	+6			
chlorine	ci					-1		+1	+2	+3	+4	+5	+6	+7		
argon	Ar															
potassium	K					-1		+1								
calcium	Ca							+1	+2							İ
scandium	Sc						0	+1	+2	+3						j
titanium	Tí				-2	-1	0	+1	+2	+3	+4					ĺ
vanadium	٧			-3		-1	0	+1	+2	+3	+4	+5				Í
chromium	Cr		-4		-2	-1	0	+1	+2	+3	+4	+5	+6			İ
manganese	Mn			-3	-2	-1	0	+1	+2	+3	+4	+5	+6	+7		İ
iron	Fe		-4		-2	-1	0	+1	+2	+3	+4	+5	+6	+7		İ
cobalt	Co			-3		-1	0	+1	+2	+3	+4	+5				İ
nickel	Ni				-2	-1	0	+1	+2	+3	+4					İ
copper	Cu				-2		0	+1	+2	+3	+4					İ
zinc	Zn				-2			+1	+2							İ
gallium	Ga	-5	-4	-3	-2	-1		+1	+2	+3						İ
germanium	Ge		-4	-3	-2	-1	0	+1	+2	+3	+4					İ
arsenic	As			-3	-2	-1		+1	+2	+3	+4	+5				
selenium	Se		'n		-2	-1		+1	+2	+3	+4	+5	+6			
bromine	Br					-1		+1		+3	+4	+5		+7		İ
krypton	Kr								+2							İ
rubidium	Rb					-1		+1								İ
strontium	Sr							+1	+2							İ
yttrium	Y						0	+1	+2	+3						İ
zirconium	Zr				-2			+1	+2	+3	+4					
niobium	Nb			-3		-1		+1	+2	+3	+4	+5				İ
molybdenum	Mo		-4		-2	-1	0	+1	+2	+3	+4	+5	+6			İ
technetium	Tc			-3		-1	0	+1	+2	+3	+4	+5	+6	+7		İ
ruthenium	Ru		-4		-2		0	+1	+2	+3	+4	+5	+6	+7	+8	İ
rhodium	Rh			-3		-1	0	+1	+2	+3	+4	+5	+6	П		İ
palladium	Pd						0	+1	+2	+3	+4					İ
silver	Ag				-2	-1		+1	+2	+3						İ
cadmium	Cd				-2			+1	+2							İ
indium	In	-5			-2	-1		+1	+2	+3						
tin	Sn		-4	-3	-2	-1	0	+1	+2	+3	+4					İ
antimony	Sb			-3	-2	-1		+1	+2	+3	+4	+5				İ
tellurium	Te				-2	-1		+1	+2	+3	+4	+5	+6			İ
iodine	1					-1		+1		+3	+4	+5	+6	+7		İ
xenon	Xe								+2		+4		+6		+8	İ
caesium	Cs					-1		+1								İ
barium	ва					116		+1	+2							İ
lanthanum	La						0	+1	+2	+3						İ
cerium	Ce								+2	+3	+4					j
praseodymium	Pr						0	+1	+2	+3	+4	+5				ĺ
neodymium	Nd						0		+2	+3	+4					f
promethium	Pm								+2	+3						j
samarium	Sm						0		+2	+3						ĺ
europium	Eu								+2	+3						
gadolinium	Gd						0	+1	+2	+3						
terbium	Tb						0	+1	+2	+3	+4					
dysprosium	Dy						0		+2	+3	+4					
1 - 2	Но						0		+2	+3						ĺ
holmium	110															

Oxidation States

hydrogen	Н					-1		+1							1
helium	He														18
lithium	Li							+1							1
beryllium	Ве						0	+1	+2						2
boron	В	-5				-1	0	+1	+2	+3					13
carbon	С		-4	-3	-2	-1	0	+1	+2	+3	+4				14
nitrogen	N			-3	-2	-1		+1	+2	+3	+4	+5			15
oxygen	0				-2	-1	0	+1	+2						16
fluorine	F					-1									17
neon	Ne														18

Where are the Elements Created!

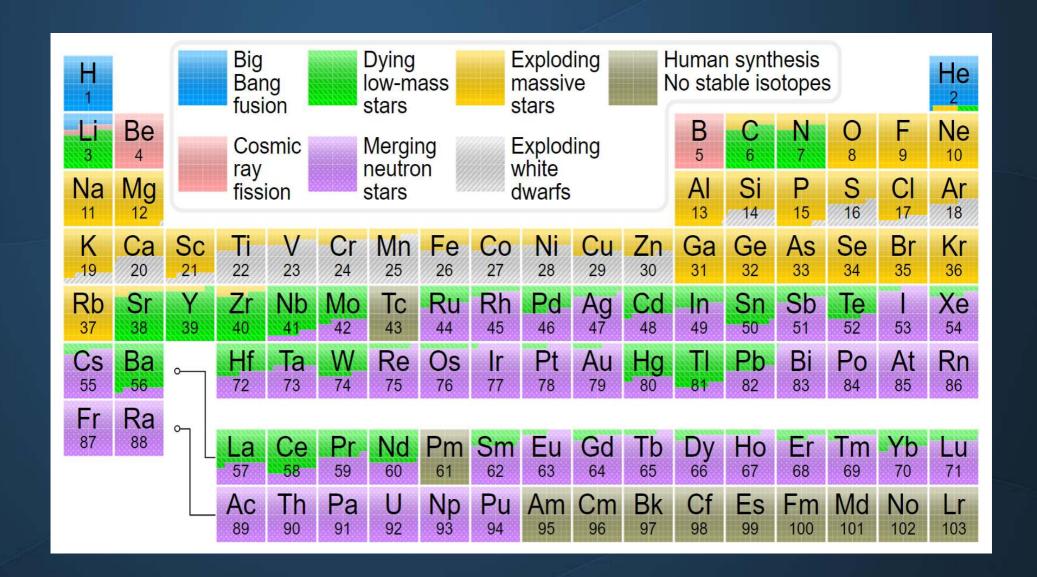
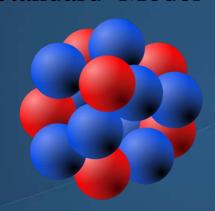
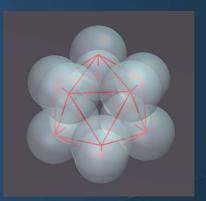


Table of Nuclides

⁴⁸ Ni	⁴⁹ Ni	50NI	Ni	⁵² Ni	⁵³ Ni	⁵⁴ Ni	⁵⁵ Ni	56NI	57Ni	⁵⁸ Ni	⁵⁹ Ni	⁶⁰ Ni	⁶¹ Ni	⁶² Ni	⁶³ Ni	⁶⁴ Ni
	C_{ℓ}	7	⁵⁰ Co	⁵¹ Co	⁵² Co	⁵³ Co	⁵⁴ Co	⁵⁵ Co	⁵⁶ Co	⁵⁷ Co	⁵⁸ Co	⁵⁹ Co	⁶⁰ Co	^G Co	⁶² Co	⁶³ Co
⁴⁶ Fe	⁴⁷ Fe	⁴⁸ Fe	⁴⁹ Fe	⁵⁰ Fe	⁵¹ Fe	⁵² Fe	⁵³ Fe	⁵⁴ Fe	⁵⁵ Fe	⁵⁶ Fe	⁵⁷ Fe	⁵⁸ Fe	⁵⁹ Fe	⁶⁰ Fe	⁶¹ Fe	⁶² Fe
⁴⁵ Mn	⁴⁶ Mn	⁴⁷ Mn	⁴⁸ Mn	⁴⁹ Mn	50Mn	⁵¹ Mn	⁵² Mn	⁵³ Mn	⁵⁴ Mn	⁵⁵ Mn	⁵⁶ Mn	⁵⁷ Mn	⁵⁸ Mn	⁵⁹ Mn	⁶⁰ Mn	⁶¹ Mn
⁴⁴ Cr	⁴⁵ Cr	⁴⁶ Cr	⁴⁷ Cr	⁴⁸ Cr	⁴⁹ Cr	⁵⁰ Cr	⁵¹ Cr	⁵² Cr	⁵³ Cr	⁵⁴ Cr	⁵⁵ Cr	⁵⁶ Cr	⁵⁷ Cr	⁵⁸ Cr	⁵⁹ Cr	⁶⁰ Cr
⁴³ V	44V	45 _V	46V	⁴⁷ V	48V	49V	50V	⁵¹ V	⁵² V	53 _V	54 _V	55 _V	56V	57 _V	58 _V	59V
42 ⊤i	⁴³ Ti	44 Ti	45TI	⁴⁶ Ti	⁴⁷ Ti	⁴⁸ Ti	⁴⁹ Ti	⁵⁰ Ti	21TI	⁵² Tí	⁵³ Ti	⁵⁴ Ti	55 _{TI}	⁵⁶ Ti	57Ti	58 _T
⁴¹ Sc	⁴² Sc	⁴³ Sc	⁴⁴ Sc	⁴⁵ Sc	⁴⁶ Sc	⁴⁷ Sc	⁴⁸ Sc	⁴⁹ Sc	⁵⁰ Sc	⁵¹ Sc	⁵² Sc	⁵³ Sc	⁵⁴ Sc	⁵⁵ Sc	⁵⁶ Sc	⁵⁷ Sc
⁴⁰ Ca	⁴¹ Ca	⁴² Ca	⁴³ Ca	⁴⁴ Ca	⁴⁵ Ca	⁴⁶ Ca	⁴⁷ Ca	⁴⁸ Ca	⁴⁹ Ca	⁵⁰ Ca	⁵¹ Ca	⁵² Ca	⁵³ Ca	⁵⁴ Ca	⁵⁵ Ca	⁵⁶ Ca
77.5	-7.0		2.04		,		-	200	7.7	7.0	22		_	100		


Isotopes and Decay Paths

How were the elements created?


Is the Nucleus Structured?

Standard Model

- No known structure
- Understanding the nucleus requires advanced mathematics
- Nucleus is thought to be chaotic in nature.
- Requires 3 forces electrostatic, strong and weak force.
- The neutron is a fundamental particle that decays into a proton and electron when removed from the nucleus.

Structured Atom Model - SAM

- Precise fixed structure that grows predictably and determines properties of the elements and the organization of the Periodic Table.
- Easy to understand, easy to visualize
- Requires one force for the atom electrostatic
- The nuclear neutron is a shared electron between protons

Presentation content

- Introduction
- Key Principles of SAM
- The New Neutron
- The Structured Nucleus
- ICCF-21 Cold Fusion LENR
- Transmutation of Elements in Nature
 - Geological
 - Biological

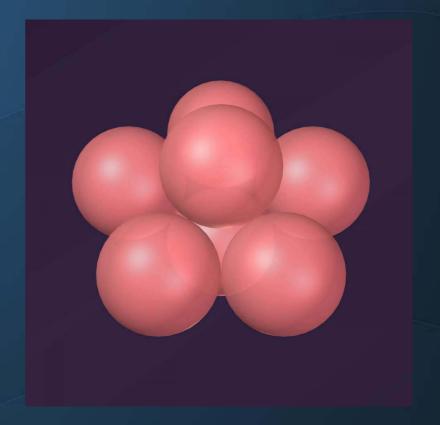
Edo (Edwin) Kaal The Atom Hacker

- Born August 3, 1972 Apeldoorn Netherlands
- Lifelong fascination with the complexity of the Periodic table and the elements.
- 2006 Major life events resulted in his questioning everything family, the courts, banking, politics and Science.

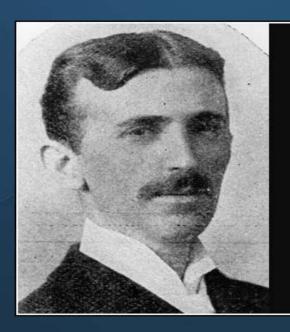
- He realized science had not advanced significantly in the last 10 years.
- Consciously decided to discard what he had been taught about atoms, electrons, protons, chemistry, etc. Started looking only at what he KNEW as absolute fact.

How many ways can 2 spheres fit together?

Let's try 3? What can nature teach me?



Magnets – the experts at dense packing


Eureka - We have Lithium!

- Structure: Pentagonal Bi-pyramid can be thought of as a partial icosahedron
- 3rd element of periodic table
- First solid element
- Prefers Lithium-7 over Lithium-6

Key Principles

- Duality the Proton and Electron.
- Dense packing stability
- Platonic Solids the tetrahedron and icosahedron.
- A static element has a static nucleus
- Must explain the Periodic Table of Elements and the properties of the elements

The idea of atomic energy is illusionary but it has taken so powerful a hold on the minds, that although I have preached against it for twenty-five years, there are still some who believe it to be realizable.

— Nikola Tesla —

AZ QUOTES

Duality

Everything that we know, both physical and non-physical, is perceived by us because of its dual nature. One cannot exist without the other.

- Female & Male
- Hot & Cold
- Love & Hate
- Positive and Negative

The proton is positive, solid, and creates structure.

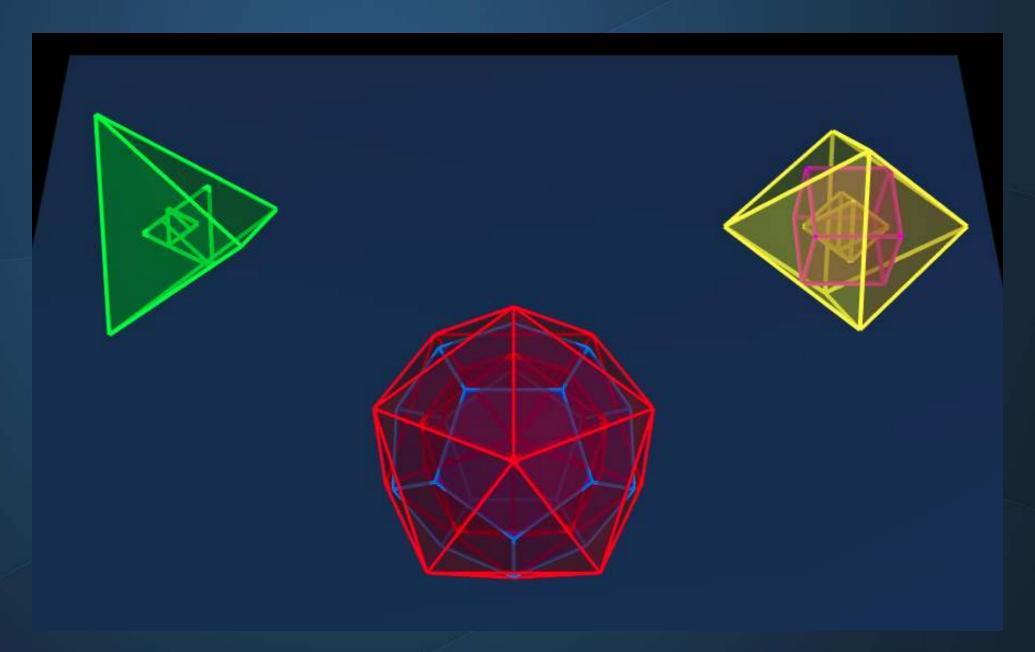
The electron is negative, more like a field or wave, and holds the structure together.

Spherical Dense Packing


Discussions on dense packing focus on spheres stacked on a flat surface. The sides are triangles, however each layer is based on the square. This is not a strong arrangement.

SAM is based on spherical dense packing. All faces are triangular. The icosahedron is the largest possible structure that is spherically dense packed.

Mans fascination with the Platonic Solids


Platonic Solids

There are 5 platonic solids.

- All vertices lie on a sphere.
- All angles are equal.
- All faces are the same.
- All vertices are surrounded by the same number of faces.

	Vertices	Sides	Face Shape	Dual	
Tetrahedron	4	4	Triangle	Itself	
Hexahedron - Cube	8	6	Square	Each Other	
Octahedron	6	8	Triangle	Other	
Icosahedron	12	20	Triangle	Each Other	
Dodecahedron	20	12	Pentagon	Other	

Platonic Solid Duals

June 2016 – Electric Universe Conference Phoenix, Az

- Edo presented publicly for first time in break-out room to 50 people.
- Afterward on EU Geology tour, James and Edo officially met while sitting together on the curb at the Grand Canyon Geology Museum.
- Together James and Edo have created software to build atoms according to SAM.
- Ethereal Matters website is place for people to discuss new and controversial subjects.

Chemistry and Physics 101

Particle Physics

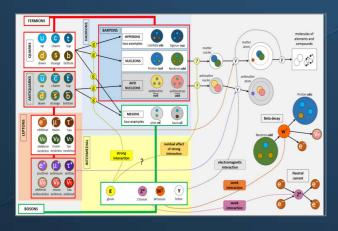
Nuclear Physics

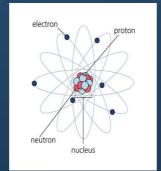
Chemistry

Quantum Mechanics

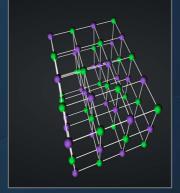
Structured Atom Model – SAM

Quantum Concepts


- Particles fading in and out of existence
- Over 200 particles identified
- Uncertainty Principle cannot know both position and speed at the same time


Nuclear Reactions

- Exploding Stars
- Nuclear Power Plants
- Atom/Hydrogen Bomb
- Radioactive decay
- LENR Reactions


Chemical Reactions

- Burning Candle
- Photosynthesis
- Cooking an Egg
- Rusting Iron
- Fireworks

Key Principles of SAM

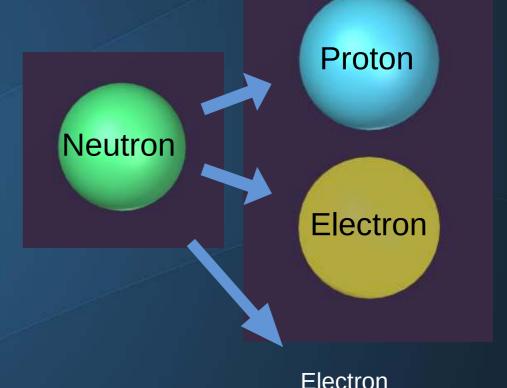
We have a duality – the proton-electron pair with the electrostatic force acting between them.

This force is the causal mechanism for the principle of densest packing that creates geometric shapes based on two of the platonic solids – the icosahedron and tetrahedron.

These geometric shapes combine together in a tree like fashion, in a specific ordered sequence and number.

This structure creates all the elements, their isotopes and it determines the properties of the Periodic Table.

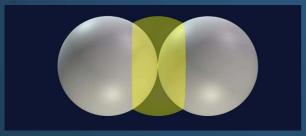
Phenomena SAM Explains

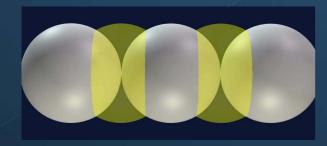

- Why do elements in the same column of the periodic table have similar properties?
- Why are the majority of the elements metals?
- Why are the noble gases inert?
- Why do elements and their isotopes have varying spin numbers?
- What is beta+, beta-, and free neutron decay?
- Why does valence follow the "Law of Octaves" -- 0, 1, 2, 3, 4/-4, -3, -2, -1, 0?
- What are isotopes and what makes them stable or not?
- Why do heavier elements have more 'neutrons' than 'protons'?
- Why are the very heavy elements unstable?
- Why are there no elements with 5 or 8 nucleons?
- Why does carbon dioxide behave similar to an inert gas?
- Why is carbon the darkest element, but carbon diamonds are transparent?
- Why is water a bi-polar molecule?

5 Pillars of Observations

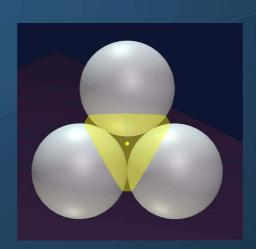
- 1. Neutron / Proton ratio
- 2. Valence / Oxidation State
- 3. Isotopes & Stability
- 4. Nuclear Reactions
- 5. Binding Energy

Free Neutron Decay


- A free neutron decays into a proton, electron and electron antineutrino within 15 minutes.
- A neutron is unstable outside the nucleus, it must be part of a nucleus to exist.
- SAM redefines the nuclear neutron to be a proton that shares it's electron with other protons in the nucleus.


anti-neutrino

The New Neutron


- A free neutron decays into a proton and electron within 15 minutes. A neutron is not stable by itself.
- SAM redefines the nuclear neutron to be a proton that shares it's electron with other protons in the nucleus.
- The nucleus is held together by the electrostatic force, there is no strong nuclear force.

Hydrogen-2 – Deuterium

Hydrogen-3 – Tritium

Helium-3

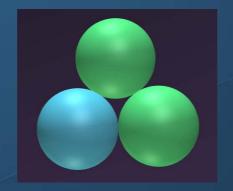
Helium-4

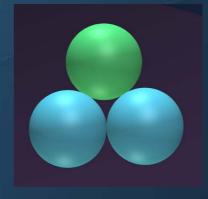
http://etherealmatters.org

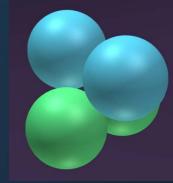
Hydrogen and Helium The First Two Elements

Hydrogen 1

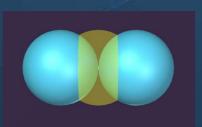
Hydrogen 2 Deuterium

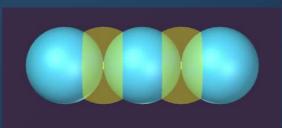

Hydrogen 3
Tritium

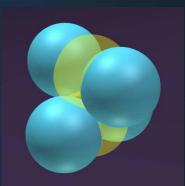

Helium 3


Helium 4
Alpha Particle

Standard Model

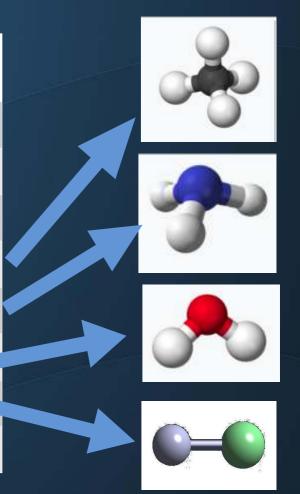






Structured Atom Model

Decay Steps


Carl Johnson Support for the New Neutron

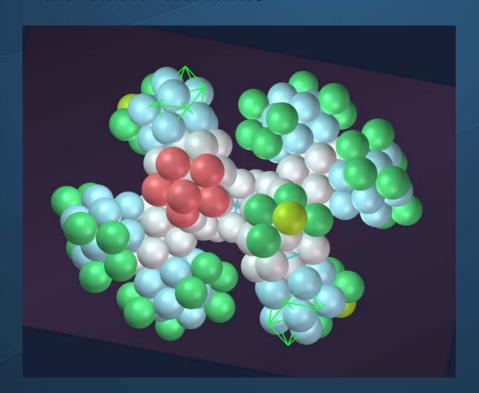
- Graduated 1967 physics degree University of Chicago
- Meticulously analyzed NIST data over period of 6+ years.
- Found there is no room for neutron binding energy.
- Weight of nucleus = protons + electrons + mass defect
- Papers:
 - Neutrinos do not exist
 - Nuclear Physics May be Fairly Simple
 - Nuclear Physics Statistical Analysis of Isotope Masses

Valence

Valence (simplified) – The maximum number of hydrogen (or chlorine) atoms an element can combine with.

	Element Name	Valence	Symbol	Compound Name
3	Lithium	+1	LiH	Lithium Hydride
4	Beryllium	+2	BeH ₂	Beryllium Hydride
5	Boron	+3	ВоНз	Boron Hydride
6	Carbon	+4/-4	CH4	Methane
7	Nitrogen	-3	NНз	Ammonia
8	Oxygen	-2	H ₂ O	Water
9	Flourine	-1	HF	Hydrogen Flouride
10	Neon	0		

"Nuclets" – Building Blocks of the Atom


	# Protons	Valence
Growing Phase - Metals		
Lithium	7	+1
Beryllium	9	+2
Boron	11	+3
_Carbon	12	+4/-4
Capping Phase - Non-Metals		
Nitrogen	14	-3
Oxygen	16	-2
Flourine	19	-1
Neutral Ending - Inert Gases		
Neon	20	0

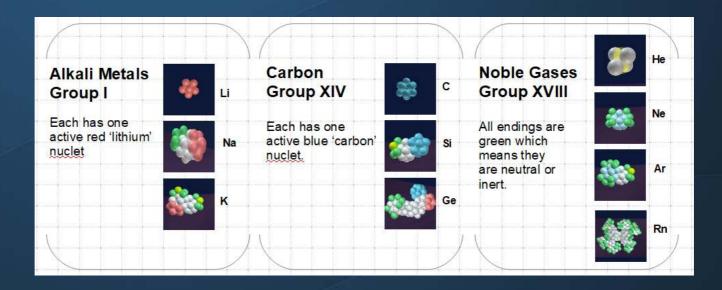
- Sodium alkali metal
- Starts 3rd row of PTE

The Shape of the Larger Elements

- The nucleus grows like a tree, splitting into branches as it gets larger.
- The center has 1 nuclet, this splits into 2 nuclets, which split into 4 nuclets and finally 8 nuclets. This completes the stable elements.

Gold?

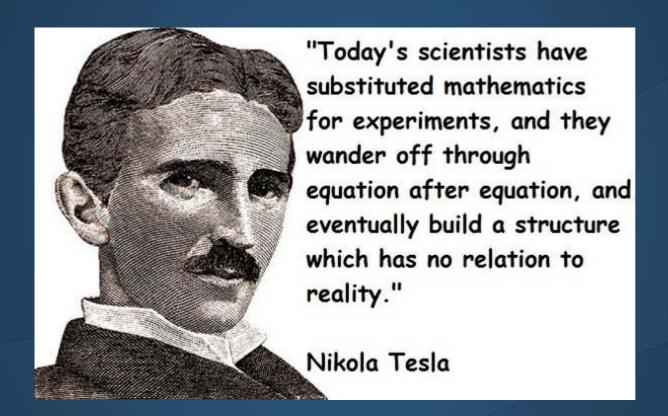
SAM Linked to the Properties of the Elements


+1 +2 +3 +4/-4 -3

Cycle of 8
The periods

-2

Groups

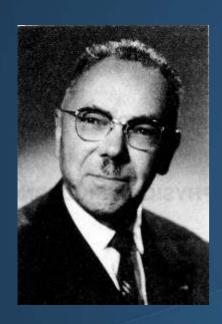

0

Periodic Table According to SAM

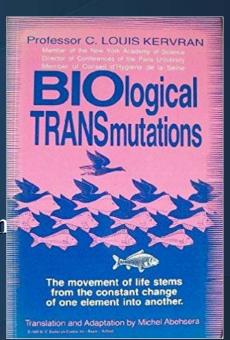
For more information and background visit the page https://etherealmatters.org/sam

The Atom According to SAM:

- Is based on the proton electron duality.
- The neutron is a proton/electron pair, electrons are shared inside the nucleus and hold it together electrostatically.
- There is no strong or weak force, only electricity.
- Does not need mathematical equations to depict the nucleus
- Is structured according to specific rules (of growth) and shapes
- Shows that the properties of the elements are dictated by the structure of the nucleus
- Is static in nature
- Tends to resist absorption of energy, reverting to its groundstate, if possible


"But as to atomic energy, my experimental observations have shown that the process of disintegration is not accompanied by a liberation of such energy as might be expected from the present theories."

Nikola Tesla on atomic energy


The Structured Atom Model TM - Ethereal Matter LLC

42

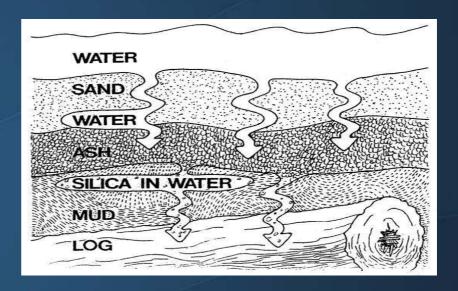
Biological Transmutations

Corentin Louis Kervran 1901-1983

- Chickens transmute Potassium-39 to Calcium-40 to make egg shells.
- Desert workers transmute Sodium into Potassium to help cool themselves an endothermic nuclear reaction.
- Seeds have different elements after they sprout.
- Animals transmute nitrogen into carbon and oxygen carbohydrates or food.

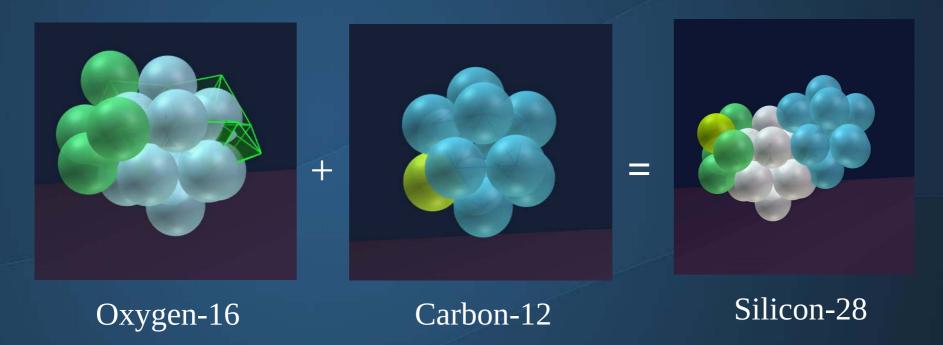
Peter Mungo Jupp – Instant Fossilization

www.ancientdestructions.com



Petrified forest in Yellowstone National park

Instant Petrification



Power line induced petrification

- Reported by Eric Milton Alberta Canada
- In rainstorm a power line falls on tree stump for 2 hours until the power is shut off.
- 5 years later they dig up the stumps and roots which contacted the broken power line were fossilized.

"The (root) piece was pure clear silica inside, it was coated with a rougher opaque crust of partially fused sand."

Transmuting Oxygen and Carbon into Silicon

When combined the nuclets share one proton. It is thought that the yellow-green proton shown on the carbon is moved over to the neutral ending of the oxygen.

The inner electron count (neutrons) remains the same therefore no radiation is produced.

Conclusions

- In Nature, transmutations are happening everywhere, we just haven't been looking for it.
- These reactions can be both endothermic and exothermic.
- What we are missing is an understanding, this will bring both predictability and controllability.
- A new understanding opens the doors for exciting new research, I believe we are on the verge of creating a new physics.

The SAM model can help us fill in this missing piece of the puzzle.

With an understanding of the nucleus we will be able to generate cheap energy, create the elements needed for agriculture, clean up radio-active waste, and propel ourselves to the stars.

The internet provides a place for users from all over the world to collaborate. People are hungry for the truth, through the internet we can bring about a New Science.

Thank You on Behalf of the Ethereal Matters Team

Edo Kaal James Sorensen Jan Emming

With special thanks to!

Steven Elswick

For more information and background visit the page https://etherealmatters.org/sam

And a special thanks to all that have helped in their own way to advance the model