#### **The Proton-Electron Atom**

#### A Proposal for a Structured Atomic Model (SAM)

**Edwin Kaal** 

Presented at EU 2017

Phoenix, Az

August 17-20, 2017





"We are all agreed that your theory is crazy. The question which divides us, is whether it is crazy enough to have a chance of being correct."



### **Presentation Overview**

I. Current Understanding of the Atom

II. A proposal for a structured atom model (SAM)

**III. Implications of the New Model** 

**IV. Conclusion** 

V. Animation of Atom Builder Application



# **JEWLANDS** LAW OF OCTAVES

- John Newlands described a Law of Octaves, noting their periodicity according to relative atomic weight in 1864, publishing it in 1865. His proposal identified the potential for new elements such as germanium.
- The concept was criticized and his innovation was not recognized by the Society of Chemists until 1887.



#### 6



Mendeleev wrote the definitive textbook of his time:

Principles of Chemistry (two volumes, 1868–1870)

Classified elements according to their chemical properties

Noticed patterns that led to his periodic table

### Periodic Table of the Elements According To Mendeleev (1897)



### **Discovery of the Electron**

- ✓ "Plum Pudding Model" by J.J. Thomson
- ✓ Performed experiments with cathode ray tubes
- ✓ Discovery of electrons also meant atoms are no longer indivisible
- Named "electrons", they proved to be identical to particles from photoelectric and radioactive materials





### **Classical Model of the Nucleus**

#### **Bohr Atomic Model of a Nitrogen Atom**

- ✓ Two types of nucleons:
- ✓ Protons and Neutrons
- ✓ Undeterministic nature
- ✓ Postulated "strong force"



### **Periodic Table of the Elements**

#### What makes an element an element ? The number of outside electrons, per definition!

| 1 | 1 1<br>H<br>Hystopen<br>1.00/04           | Atomic #<br>Symbol<br>Name<br>Atomic Nass | С          | Solid                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Metals Nonmetals                     |                                    |                                  |                                      |                              |                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 *<br>He<br>Helinn<br>+ 002502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15                                       |                                           |                                          |             |
|---|-------------------------------------------|-------------------------------------------|------------|---------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------|----------------------------------|--------------------------------------|------------------------------|--------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|-------------|
| 2 | 3 7<br>LL<br>1.45 am<br>0.91              | 4 1<br>Be<br>Limpterm<br>5.012182         | Hç<br>H    | Liquid<br>Gas                         |                                       | Alkali me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Alkaline<br>earth me                 | Lanthanoid                         | metals                           | Paor me                              | Other                        | Noble ga                       | 5 5<br>B<br>10 811                      | 6 ‡<br>C<br>12 0107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <pre>/ 3 N tetroper / 0007</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8 ĝ                                      | 9 ₹<br>F<br>18.0000                       | 10 है<br>Ne<br>Nenn<br>20.1797           | N.L.        |
| 3 | 11 2<br>Na<br>Sintium<br>22.85876525      | 12 Mg<br>Mg<br>Mgratum<br>21,200          | R          | f Unknow                              | 'n                                    | lals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lais                                 | Actinoids                          | 2                                | tals                                 | <u></u>                      | ses                            | 13 5<br>Al<br>30 6016300                | 14 3<br>Si<br>14078<br>25 0505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16 3<br>5<br>5<br>32,005                 | 17 8<br>CI<br>6 Monora<br>30,453          | 18 38<br>Ar<br>Agen<br>38,915            | GrW         |
| 4 | 1H 2<br>K 1<br>Potacorum<br>39,0663       | 20 Ca 4                                   | Sc Scondum | 22 5<br>Ti 5<br>1000000               | 2/3 2<br>V 12<br>Vanadium<br>60 9110  | 24<br>Cr<br>Chromum<br>61,9601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Min<br>Min<br>Mangorese<br>61.885016 | Fe 12                              | Co<br>Co<br>Uesal:<br>55.853.895 | 28 Ni<br>Ni<br>56.5631               | Cu<br>Cu<br>Cospor<br>53.545 | 30) 30<br>Zn 30                | 31 *<br>Ga *<br>vallem<br>ce 723        | 32 3<br>Ge 4<br>Gemanum<br>72 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 333 5<br>As *<br>Assmo<br>7* 90160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34 3<br>Se 4<br>Vicienum<br>75.46        | Br State                                  | Kr s                                     | ZSrW        |
| 5 | Bucklum<br>85.4078                        | 38<br>Sr<br>Stontum<br>87.02              | 39<br>Y 5  | 10 30<br>Zr 30<br>91.224              | 11 Statement                          | 42 to the second | 13<br>Tc<br>Toolsectum<br>(97.9072)  | 41<br>Ru<br>Bathenium              | 45<br>Rh<br>Bhotlum<br>102 90250 | 10<br>Polladium<br>100 42            | Ag                           | 18<br>Cd<br>Codmium<br>112.411 | 19 ************************************ | 50 50<br>Sn 1<br>116,710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 51 5<br><b>Sb</b><br>/ectempery<br>121,700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52 9<br><b>Te</b> 9<br>Telutum<br>127.00 | 63 4<br>ledino<br>120.50447               | C1 3<br>Xe 3<br>Xonon<br>191,295         | C.25-9      |
| 6 | th 28<br>CS 15<br>Usesum 1<br>132 805*016 | 6H 8<br>Ba 16<br>Lienum 2<br>137.327      | 57-71      | 72 1 4<br>Hf 42<br>Nationam<br>178.46 | 73 3<br>Ta 4<br>sttalum<br>190.91785  | /4 2<br>W 40<br>ungsten 2<br>183.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /h<br>Re<br>Hervan<br>186.207        | 7/6 1<br>05 6<br>Camum 1<br>190.23 | // 1<br>In 19<br>182 217         | 78<br>Pt 5<br>Habnum 1<br>195 051    | Au Stores                    | BII 1                          | 81 5<br>TI 42<br>16alium 5<br>391.3835  | 82 and a start of the start of | 83 and a second | 8/1 a<br>Po a<br>1000000 b<br>1208.98210 | 85 8<br>At 8<br>Astatione 7<br>(209.8871) | HH 53<br>Rn 53<br>Haden 53<br>1232 01769 | NOZELM      |
| 7 | 87 2 30<br>Fr 10<br>(223)                 | 88 ****<br>Ra ***<br>Hodum **             | 89–103     | 104<br>Rf 57<br>Hatenstan 79          | 105 34<br>Db 34<br>Dubnum 1;<br>(252) | 106<br>Sg #<br>Scotogum 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 107<br>Bh<br>Botmum<br>(264)         | 108<br>Hs 5<br>Haboum 19           | 109<br>Mt St<br>Netronum         | 110<br>DS S<br>Domototium 14<br>(270 | 111<br>Rg<br>Hantonen        | 112<br>Uub<br>Ununbum<br>(285) | 113<br>Uut<br>Unit 3<br>(284)           | 114<br>Uuq<br>(259)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 115<br>Uup<br>(258)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 116 3<br>Uuh 5<br>(252) 2                | 117<br>Uus<br>Unitopum                    | 118 3<br>Uuo 5<br>Ununoctum 7<br>(294)   | 6.80.25 r.S |

Plable

For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses.

|         |         | Design and Interface Copyright (i) 1997 Michael Dayah (michael@dayah.com), http://www.ptable.com/ |                                             |                                         |                                 |                                 |                                |                |                       |                                  |                                       |                                     |                     |                                   |                                        |
|---------|---------|---------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------|---------------------------------|---------------------------------|--------------------------------|----------------|-----------------------|----------------------------------|---------------------------------------|-------------------------------------|---------------------|-----------------------------------|----------------------------------------|
| 57<br>L | 7       | 58 8<br>Ce 18<br>Cwillian<br>140 150                                                              | 59 \$<br>Pr 35<br>Francolymian<br>140 53705 | 60 8<br>Nd 11<br>Nexdynakars<br>144 740 | 61 is<br>Proceeditions<br>(145) | 62<br>Sm<br>Semackers<br>100 30 | 63 Eu                          | 64<br>Gd       | 65 5<br>Tb            | 66 8<br>Dy<br>Dy 2500            | 67 B<br>Ho<br>Holmions<br>Sind States | 68 8<br>Er 35<br>Erbierr<br>197 275 | 69 3<br>Tm 34       | 70 8<br>Yb 19<br>YileLb = 173.054 | 71 8<br>Lu 21<br>Lute Jami<br>174 5008 |
| 89<br>A | C State | 90 Th 19 72 72 72 72 72 72 72 72 72 72 72 72 72                                                   | 91 Pa Browedminn 22                         | 92 ta Barrier                           | 93<br>Np<br>Neptanian<br>(211)  | 94<br>Pu<br>Platerium<br>(744)  | 95<br>Am<br>Americian<br>(244) | 96<br>Cm (24.) | 97 Bk Buckeline (244) | 96<br>Cf<br>Californian<br>(253) | 99<br>Es<br>Etatemen                  | 100 Fm Boger                        | 101 Md Md Land Land | 102 Helder                        | 103 Lr<br>Lr<br>Lessentier             |

### Understanding the Standard Model Requires Us to Believe These Things:

- A Strong Force: Protons "stuck together"
- ✓ Electrons "mysteriously" stay at a certain distance from the nucleus
- The existence of four "fundamental forces" that are not unified
- The neutron is a fundamental particle, but it decays to (p + e)
- ✓ There is no real agreement on anything, and if professors in QM cannot agree among themselves, how can we understand anything they present?
- Scientists should not have to believe certain things in order to do science!

| 13 |                             | THINK.                 |           | WHAT ATTRIBUTES<br>Should an atom<br>Model have? |            |
|----|-----------------------------|------------------------|-----------|--------------------------------------------------|------------|
|    | ✓ Shows a logic             | cal construction of th | e atom i  | n accordance with ob                             | servations |
|    | ✓ Explains why around it    | the atom has a posit   | ive nucl  | eus with negative ele                            | ctrons     |
|    | ✓ Explains why              | the electrons do not   | fall into | the positive nucleus                             |            |
|    | ✓ Explains in a             | logical manner how o   | chemistr  | y arises                                         |            |
|    | $\checkmark$ Explains the p | periodicity of the PTE | E         |                                                  |            |
|    | ✓ Open Questio              | on: Why do electrons   | and pro   | tons not annihilate ea                           | ch other?  |



### **II. A Proposal for a Structured Atom Model**

#### **Major Postulations:**

- There are only two fundamental"particles":
- ✓ Proton and Electron, are a duality, or opposites
- ✓ Yet, they do not annihilate each other

| Attribute | Proton   | Electron |
|-----------|----------|----------|
| Mass      | Heavy    | Light    |
| Size      | Large    | Small    |
| Charge    | Positive | Negative |
| Charge    | Positive | Negative |

### II. A Proposal for a Structured Atom Model More Postulations:

- ✓ There is only one fundamental force: the electrostatic attraction force
- The atom must have a definitive organization which is responsible for all attributes of a particular element
- The neutron is not a fundamental particle, but is redefined as a connection between a nuclear electron and its neighboring protons
- ✓ A stable element has a stable nucleus, i.e. no movement, without cause, in the structure of the nucleus
- ✓ A sphere (proton) must always be part of one of the 3 identified geometrical structures, namely the tetrahedron, the pentagonal bi-pyramid, or the icosahedron
- The inner structure of the atom (nucleus) dictates the outer electron structure (orbitals)

### The "New" Neutron

- Plus and minus combine to neutral status
- Field of connection of the proton and electron
- Connection on both sides yields "outer electron state"
- Connection on one side only yields the neutron state (inner electron)
- ✓ No "external" field: no interaction, hence neutral character of the neutron
- ✓ Inner electron leaves no room for another electron
- ✓ The latter relocates at some distance from the nucleus: goes "orbital"



"Free" Neutron is unstable; decays to H in 15 minutes Neutron (= connection) Inner electron connected to 2 protons



He3 - Resting Position of Inner Electron



He3 - One "Neutron"

#### Paper by Carl Johnson Statistical Analysis of Isotope Masses

Analysis of the measured masses of all known atomic isotopes contained in the NIST data base, done from 1996 to 2003 (published privately at: http://mb-soft.com/public2/nuclei6.html)

Major conclusions of this paper:

Neutrons do not exist inside atomic nuclei as distinct particles

The only fundamental particles are the electron and the proton

The accurate accounting (AMU accuracy to 10 decimal places) of mass and energy of all known isotopes leaves no room for the 0.7 MeV binding energy of any neutrons

Provides precise predictions of mass, lifetime before decay, modes of decay and the energy released by that decay

Data plots point to isotopes which have not yet been discovered



### REMEMBER THE Platonic Solids?

Every Wonder! Why is geometry apparent in the study of mathematics, music, cosmology, and ALL the life sciences. Moon Model - A nested System







Left to right: hydrogen, deuterium, helium3, helium4, lithium and carbon.

## **GEOMETRIC STRUCTURE**

These geometric nuclets are repeating inside the nucleus





### **Research in Progress**





### **Integrated Geometry of the Atomic Nucleus**

Magnesium: 3 Geometric Shapes





### The Noble Gas Configuration





### Main Structure of the Nucleus







### Recurring Geometric Shapes in the Periodic Table Carbon Group

|      | 1                   | 2                   | 3                  | 4                     | 5                  | 6                   | 7                   | 8                | 9                   | 10                   | 11                   | 12                   | 13                  | 14                  | 15                 | 16                   | 17                  | 18                  |
|------|---------------------|---------------------|--------------------|-----------------------|--------------------|---------------------|---------------------|------------------|---------------------|----------------------|----------------------|----------------------|---------------------|---------------------|--------------------|----------------------|---------------------|---------------------|
|      | 1                   | Atomic              |                    |                       |                    |                     |                     |                  |                     |                      |                      |                      |                     |                     | Pnictogens         | Chalcogens           | Halogens            | 2                   |
| 1    | H<br>Hydrogen       | Sym<br>Name         | С                  | Solid                 |                    | $\square$           | Ν                   | letals           |                     | Met                  | Nonme                | etals                |                     |                     |                    |                      | 273                 | He<br>Helium        |
| - 22 | 1.008<br>3          | Weight              | Hg                 | Liquid                |                    | Alka                | <u></u> ≜ Lant      | hanoids          | Tran                | Post                 | Othe                 | Nop                  | 5                   | 6                   |                    | 8                    | 9                   | 4.0026<br>10        |
| 2    | Lithium             | Beryllium           | H                  | Gas                   |                    | li me               | line e              |                  | sition              | -tran                | r<br>netal           | e ga                 | B<br>Boron          | C<br>Carbon         | litrogen           | O<br>Oxygen          | Fluorine            | Neon                |
| 2    | 0.94<br>11<br>No    | 12<br>Ma            | Df                 | Unkno                 |                    | tals                | Actin               | noias            |                     | sition               | S                    | ses                  | 13                  | 14<br>Si            | 5                  | 16<br>C              | 17                  | 18<br><b>A</b> r    |
| 3    | Sodium<br>22.990    | Magnesium<br>24.305 | KI                 | UTIKITU               | VVII               |                     |                     |                  |                     |                      |                      |                      | Aluminium<br>26.982 | Silicon<br>28.085   | hosphorus<br>0.974 | Sulfur<br>32.06      | Chlorine<br>35.45   | Argon<br>39.948     |
| 1    | 19<br><b>K</b>      | 20<br>Ca            | 21<br>Sc           | 22<br><b>Ti</b>       | 23<br>V            | 24<br>Cr            | 25<br>Mn            | 26<br>Fe         | 27<br>Co            | 28<br>Ni             | 29<br>Cu             | 30<br>Zn             | 31<br>Ga            | 32<br>Ge            | 3<br>As            | 34<br>Se             | 35<br>Br            | 36<br>Kr            |
|      | Potassium<br>39.098 | Calcium<br>40.078   | Scandium<br>44.956 | Titanium<br>47.867    | Vanadium<br>50.942 | Chromium<br>51.996  | Manganese<br>54.938 | Iron<br>55.845   | Cobalt<br>58.933    | Nickel<br>58.693     | Copper<br>63.546     | Zinc<br>65.38        | Gallium<br>69.723   | Germanium<br>72.630 | rsenic<br>4.922    | Selenium<br>78.971   | Bromine<br>79.904   | Krypton<br>83.798   |
| 5    | 37<br>Rb            | 38<br>Sr            | 39<br><b>Y</b>     | 40<br>Zr              | 41<br>Nb           | 42<br><b>Mo</b>     | 43<br>Tc            | Ru               | <sup>45</sup><br>Rh | 46<br>Pd             | <sup>47</sup><br>Ag  | 48<br>Cd             | 49<br>In            | Sn                  | 51<br>Sb           | 52<br>Te             | 53<br>              | 54<br>Xe            |
| Ŭ    | Rubidium<br>85.468  | Strontium<br>87.62  | Yttrium<br>88.906  | Zirconium<br>91.224   | Niobium<br>92.906  | Molybdenur<br>95.95 | Technetium<br>(98)  | Ruthenium 101.07 | Rhodium<br>102.91   | Palladium<br>106.42  | Silver<br>107.87     | Cadmium<br>112.41    | Indium<br>114.82    | Tin<br>118.71       | Antimony<br>121.76 | Tellurium<br>127.60  | lodine<br>126.90    | Xenon<br>131.29     |
| 6    | 55<br>Cs            | 56<br>Ba            | 57_71              | 72<br>Hf              | 73<br><b>Ta</b>    | 74<br>W             | 75<br>Re            | 76<br>Os         | 77<br>Ir            | 78<br>Pt             | 79<br>Au             | 80<br>Ha             | 81<br><b>TI</b>     | 82<br>Pb            | 83<br>Bi           | 84<br><b>Po</b>      | 85<br>At            | <sup>86</sup><br>Rn |
| 0    | Caesium<br>132.91   | Barium<br>137.33    | 57-71              | Hafnium<br>178.49     | Tantalum<br>180.95 | Tungsten<br>183.84  | Rhenium<br>186.21   | Osmium<br>190.23 | Iridium<br>192.22   | Platinum<br>195.08   | Gold<br>196.97       | Mercury<br>200.59    | Thallium<br>204.38  | Lead<br>207.2       | Bismuth<br>208.98  | Polonium<br>(209)    | Astatine<br>(210)   | Radon<br>(222)      |
| 7    | 87<br>Fr            | 88<br>Ra            | 89-103             | 104<br>Rf             | 105<br>Db          | 106<br>Sa           | 107<br>Bh           | 108<br>HS        | 109<br>Mt           | 110<br>DS            | 111<br>Ra            | 112<br>Cn            | 113<br>Nh           | 114<br>FI           | 115<br>MC          | 116<br>L V           | 117<br>Ts           | 118<br>Og           |
| 1    | Francium<br>(223)   | Radium<br>(226)     | 03-103             | Rutherfordiu<br>(267) | Dubnium<br>(268)   | Seaborgium<br>(269) | Bohrium<br>(270)    | Hassium<br>(277) | Meitnerium<br>(278) | Darmstadtiu<br>(281) | Roentgeniur<br>(282) | Coperniciun<br>(285) | Nihonium<br>(286)   | Flerovium<br>(289)  | Moscovium<br>(290) | Livermorium<br>(293) | Tennessine<br>(294) | Oganesson<br>(294)  |
|      |                     |                     |                    |                       |                    |                     |                     |                  |                     |                      |                      |                      |                     |                     |                    |                      |                     |                     |

Recurring Geometric Shapes in the Periodic Table: Carbon group



### Recurring Geometric Shapes in the Periodic Table Alkali Metal Group

|                      | 1                      | 2                                   | 3                           | 4                           | 5                         | 6                         | 7                            | 8                         | 9                         | 10                        | 11                         | 12                       | 13                            | 14                        | 15<br>Pnictogens                     | 16<br>Chalcogens                   | 17<br>Halogens                        | 18                                   |
|----------------------|------------------------|-------------------------------------|-----------------------------|-----------------------------|---------------------------|---------------------------|------------------------------|---------------------------|---------------------------|---------------------------|----------------------------|--------------------------|-------------------------------|---------------------------|--------------------------------------|------------------------------------|---------------------------------------|--------------------------------------|
| 1 H                  | vdrogen                | Atomic<br>Sym<br>Name<br>Weight     | С                           | Solid                       |                           |                           | N<br>N                       |                           | 2 -1 =                    | Meta                      | Nonme                      | etals                    |                               |                           |                                      | [                                  | 273                                   | 2<br>He<br>Helium<br>4 0026          |
|                      | <b>.i</b><br>thium     | Be<br>eryllium                      | Hg                          | Liquid                      |                           | lietais<br>Jkali me       | lkaline                      | manoius                   | ransitio                  | lloids<br>ost-tran        | )ther<br>onmeta            | loble ga                 | 5<br>B<br>Boron               | 6<br>C<br>Carbon          | 7<br>N<br>Nitrogen                   | 8<br>O<br>Oxygen                   | 9<br>F<br>Fluorine                    | 10<br>Neon                           |
| 6.9<br>11<br>11<br>N | 94 9<br>1<br>1a        | 0122<br>2<br><b>Ag</b><br>lagnesium | Rf                          | Unkno                       | wn                        | stals                     | earth Acti                   | noids                     | 5                         | sition                    | <u></u>                    | ises                     | 10.81<br>13<br>Aluminium      | 12.011<br>14<br>Silicon   | 14.007<br>15<br>Phosphorus           | 15.999<br>16<br><b>S</b><br>Sulfur | 18.998<br>17<br><b>Cl</b><br>Chlorine | 20.180<br>18<br><b>Ar</b><br>Argon   |
| 22<br>19<br>K        | 2.990<br>9<br>Dtassium | 4.305<br>0<br>2 <b>a</b><br>alcium  | 21<br><b>Sc</b><br>Scandium | 22<br><b>Ti</b><br>Titanium | 23<br>V<br>Vanadium       | 24<br>Cr<br>Chromium      | 25<br><b>Mn</b><br>Manganese | 26<br>Fe                  | 27<br>Co<br>Cobalt        | 28<br>Ni<br>Nickel        | 29<br>Cu<br>Copper         | 30<br>Zn<br>Zinc         | 26.982<br>31<br>Ga<br>Gallium | 28.085<br>32<br>Gemanium  | 30.974<br>33<br><b>As</b><br>Arsenic | 32.06<br>34<br>Se<br>Selenium      | 35.45<br>35<br><b>Br</b><br>Bromine   | 39.948<br>36<br><b>Kr</b><br>Krypton |
| 39<br>5 R            | 8.098<br>Rb            | 0.078<br>8<br>Sr                    | 44.956<br>39<br><b>Y</b>    | 47.867<br>40<br><b>Zr</b>   | 50.942<br>41<br><b>Nb</b> | 51.996<br>42<br><b>Mo</b> | 54.938<br>43<br><b>TC</b>    | 55.845<br>44<br><b>Ru</b> | 58.933<br>45<br><b>Rh</b> | 58.693<br>46<br><b>Pd</b> | 63.546<br>47<br><b>Ag</b>  | 65.38<br>48<br><b>Cd</b> | 69.723<br>49<br><b>In</b>     | 72.630<br>50<br><b>Sn</b> | 74.922<br>51<br><b>Sb</b>            | 78.971<br>52<br><b>Te</b>          | 79.904<br>53<br>                      | 83.798<br>54<br><b>Xe</b>            |
| 85<br>55             | 5.468                  | Strontium<br>87.62<br>56            | 906 x                       | 2irconium<br>91.224<br>72   | 92.906<br>73              | Molybdenur<br>95.95<br>74 | (98)<br>75                   | Ruthenium<br>101.07<br>76 | Rhodium<br>102.91<br>77   | Palladium<br>106.42<br>78 | 500 Silver<br>107.87<br>79 | Cadmium<br>112.41<br>80  | 114.82<br>81                  | 118.71<br>82<br>Db        | Antimony<br>121.76<br>83             | 127.60<br>84                       | 126.90<br>85                          | Xenon<br>131.29<br>86                |
| Ca<br>13<br>87       | aesium<br>32.91<br>7   | <b>Da</b><br>Barium<br>137.33<br>88 | 57–71                       | Hafnium<br>178.49<br>104    | Tantalum<br>180.95<br>105 | Tungsten<br>183.84<br>106 | Rhenium<br>186.21<br>107     | Osmium<br>190.23<br>108   | Iridium<br>192.22<br>109  | Platinum<br>195.08<br>110 | Gold<br>196.97<br>111      | Mercury<br>200.59<br>112 | Thallium<br>204.38<br>113     | Lead<br>207.2<br>114      | Bismuth<br>208.98<br>115             | Polonium<br>(209)<br>116           | Astatine<br>(210)<br>117              | Radon<br>(222)<br>118                |
|                      | ancium                 | Ra<br>Radium                        | 89–103                      | Rf<br>Rutherfordiu          | Dubnium                   | Seaborgium                | Bh<br>Bohrium                | Hs<br>Hassium             | Mt<br>Meitnerium          | Ds<br>Darmstadtiu         | Roentgeniur                | Cn<br>Copernicium        | Nh<br>Nihonium                | FI<br>Flerovium           | Mc<br>Moscovium                      | Lv<br>Livermorium                  | Ts<br>Tennessine                      | Oganesso                             |

### Recurring Geometric Shapes in the Periodic Table – Alkali metal group



#### Recurring Geometric Shapes in the Periodic Table Noble Gas Group

|   | 1                                     | 2                                    | 3                           | 4                                     | 5                         | 6                         | 7                                     | 8                         | 9                                    | 10                                     | 11                                  | 12                       | 13                            | 14                        | 15<br>Pnictogens                     | 16<br>Chalcogens                   | 17<br>Halogens                        | 18                                   |
|---|---------------------------------------|--------------------------------------|-----------------------------|---------------------------------------|---------------------------|---------------------------|---------------------------------------|---------------------------|--------------------------------------|----------------------------------------|-------------------------------------|--------------------------|-------------------------------|---------------------------|--------------------------------------|------------------------------------|---------------------------------------|--------------------------------------|
| 1 | 1<br>H<br>Hydrogen                    | Atomic<br>Sym<br>Name<br>Weight      | С                           | Solid                                 |                           |                           | N                                     | letals                    |                                      | Meta                                   | Nonme                               | etals                    |                               |                           |                                      |                                    | 273                                   | 2<br><b>He</b><br>Helium             |
| 2 | 3<br>Li                               | 4<br>Be<br>Beryllium                 | Нg                          | Liquid                                |                           | Alkali me                 | Alkaline                              | nanoios                   | ransitior<br>netals                  | illoids<br><sup>p</sup> ost-tran       | Other                               | Voble ga                 | 5<br>B<br>Boron               | 6<br>C<br>Carbon          | 7<br>N<br>Nitrogen                   | 8<br>O<br>Oxygen                   | 9<br><b>F</b><br>Fluorine             | 10<br>Ne<br>Neon                     |
| 3 | 6.94<br>11<br>Na<br>Sodium            | 9.0122<br>12<br>Mg<br>Magnesium      | Rf                          | Unkno                                 | wn                        | tals                      | Acti                                  | noids                     |                                      | sition                                 | <u>o</u>                            | ses                      | 10.81<br>13<br>Aluminium      | 12.011<br>14<br>Silicon   | 14.007<br>15<br>Phosphorus           | 15.999<br>16<br><b>S</b><br>Sulfur | 18.998<br>17<br><b>CI</b><br>Chlorine | 18<br>Ar<br>Argon                    |
| 4 | 22.990<br>19<br><b>K</b><br>Potassium | 24.305<br>20<br><b>Ca</b><br>Calcium | 21<br><b>Sc</b><br>Scandium | 22<br><b>Ti</b><br>Titanium           | 23<br>V<br>Vanadium       | 24<br>Cr<br>Chromium      | 25<br><b>Mn</b><br>Manganese          | 26<br>Fe<br>Iron          | 27<br>Co<br>Cobalt                   | 28<br>Ni<br>Nickel                     | 29<br>Cu<br>Copper                  | 30<br>Zn<br>Zinc         | 26.982<br>31<br>Ga<br>Gallium | 32<br>Gemanium            | 30.974<br>33<br><b>As</b><br>Arsenic | 32.06<br>34<br>Se<br>Selenium      | 35.45<br>35<br>Br<br>Bromine          | 39.948<br>36<br><b>Kr</b><br>Krypton |
| 5 | 39.098<br>37<br><b>Rb</b>             | 40.078<br>38<br><b>Sr</b>            | 44.956<br>39<br><b>Y</b>    | 47.867<br>40<br><b>Zr</b>             | 50.942<br>41<br><b>Nb</b> | 51.996<br>42<br><b>Mo</b> | 54.938<br>43<br><b>Tc</b>             | 55.845<br>44<br>Ru        | 58.933<br>45<br><b>Rh</b><br>Bhodium | 58.693<br>46<br><b>Pd</b><br>Palladium | 63.546<br>47<br><b>Ag</b>           | 65.38<br>48<br><b>Cd</b> | 69.723<br>49<br>In            | 72.630<br>50<br><b>Sn</b> | 74.922<br>51<br><b>Sb</b>            | 78.971<br>52<br><b>Te</b>          | 79.904<br>53                          | 83.798<br>54<br><b>Xe</b>            |
| 6 | 85.468<br>55<br><b>CS</b>             | 87.62<br>56<br><b>Ba</b>             | 88.906<br>57-71             | 91.224<br>72<br>Hf                    | 92.906<br>73<br><b>Ta</b> | 95.95<br>74<br><b>W</b>   | (98)<br>75<br><b>Re</b>               | 101.07<br>76<br><b>OS</b> | 102.91<br>77<br>Ir                   | 106.42<br>78<br>Pt                     | 107.87<br>79<br>Au                  | 112.41<br>80<br>Hg       | 114.82<br>81<br><b>TI</b>     | 118.71<br>82<br><b>Pb</b> | 121.76<br>83<br><b>Bi</b>            | 127.60<br>84<br><b>Po</b>          | 126.90<br>85<br>At                    | 131.29<br>86<br><b>Rn</b>            |
| 7 | Caesium<br>132.91<br>87<br>Er         | Barium<br>137.33<br>88<br><b>P</b> 2 | 00, 400                     | Hafnium<br>178.49<br>104<br><b>Df</b> | Tantalum<br>180.95<br>105 | Tungsten<br>183.84<br>106 | Rhenium<br>186.21<br>107<br><b>Bb</b> | Osmium<br>190.23<br>108   | Iridium<br>192.22<br>109             | Platinum<br>195.08<br>110              | Gold<br>196.97<br>111<br><b>P</b> C | Mercury<br>200.59<br>112 | Thallium<br>204.38<br>113     | Lead<br>207.2<br>114      | Bismuth<br>208.98<br>115             | Polonium<br>(209)<br>116           | Astatine<br>(210)<br>117              | Radon<br>(222)<br>118                |
| 1 | Francium<br>(223)                     | Radium<br>(226)                      | 89–103                      | Rutherfordiu<br>(267)                 | Dubnium<br>(268)          | Seaborgium<br>(269)       | Bohrium<br>(270)                      | Hassium<br>(277)          | Meitnerium<br>(278)                  | Damstadtiu<br>(281)                    | Roentgeniur<br>(282)                | Copernicium<br>(285)     | Nihonium<br>(286)             | Flerovium<br>(289)        | Moscovium<br>(290)                   | Livermorium<br>(293)               | Tennessine<br>(294)                   | Oganesson<br>(294)                   |







### **SAM Atom Builder Current Status**

- ✓ Focus on structure
- ✓ Creation of a PTE
- ✓ 40% of elements created
- ✓ Leaving the other 60% to be done
- ✓ Undisovered elements
- Progression of the elements



#### The Atom Builder – Structuredatom.org

#### Atom Builder

Help text - can

#### Focus on creating the elements automatically

Creation of a Periodic Table according to the model

Future Atom builder with Inner electron behavior

Molecule builder

| Vew Edit Outly                                       | ne Delete       | Revisions | Devel |  |
|------------------------------------------------------|-----------------|-----------|-------|--|
| ⊙≣0⊗k√Xm                                             | p or something. |           |       |  |
| Atom Attributes                                      |                 |           |       |  |
| Nuclets 5<br>Protons 87                              |                 |           |       |  |
| Atom Information                                     |                 |           |       |  |
| Nickel                                               |                 |           | 0.50  |  |
| Earart: Notel                                        |                 |           |       |  |
| # Protons: 50<br># Inner electrons: 30               |                 |           |       |  |
| # Outer electrons: 28                                |                 |           |       |  |
| Stability: Preferred<br>Ulthium nuclet and Thoras 10 |                 |           |       |  |
| nucleit resulting in a +1 and a +2                   |                 |           |       |  |
| ending totalling +3 as a normal valence state.       |                 |           |       |  |
| Looks a lot like iron and pobalt                     |                 |           |       |  |
| indeed All three are showing<br>magnetic properties. |                 |           |       |  |
| Note: Lithium ring does not show.                    |                 |           |       |  |

| Select Atom                            |   |            |              |     |  |
|----------------------------------------|---|------------|--------------|-----|--|
| 240 P                                  |   | Voietie    |              | 240 |  |
| Kalun                                  |   | Statie     |              | -39 |  |
| maximum configuration "stable" element |   | Unstable   |              | 226 |  |
| oops element                           |   | Voiatile   |              |     |  |
| Backbore Initial                       |   |            |              |     |  |
| Missing +1 element after N E 50        |   | Preferred  |              | 53  |  |
| mesong noble gas 2 (66)                |   | Impossible |              | 85  |  |
| Phosphor                               |   | Preferred  |              | 31  |  |
| Hydrogen 2                             | 1 | Stable     | 01 Lithium   | 2   |  |
| Hydrogen 3                             | 1 | Suble      | 01 Lithium   | 3   |  |
| Hydrogen 1                             | 1 | Suble      | (1)Utum      | 1   |  |
| Nation 4                               | 2 | Preferred  | 18 Neon      | 4   |  |
| Lithium 6                              | 3 | Sable      | 01 Lithium   | 6   |  |
| Lithium 7                              | 3 | Preferred  | 01 Lithium   | T   |  |
| Benjfiun 9                             | 4 | Preferred  | 02 Berylliam | .9  |  |
| Boron 11                               | 5 | Preferred  | 13 Boran     | 11  |  |

### **Summary of the New Atomic Model**

- ✓ We have defined a duality: the proton-electron pair
- ✓ Operating between proton and electron is the electrostatic force
- This force is the causal factor for the principle of densest packing that creates geometric shapes
- These geometric shapes in a specific order and number are able to create all elements in the PTE
- The model shows the observed nature and properties of the atom such as:
  - The reason why the nucleus is positively charged
  - Explains why the outer electrons stay at a distance from the nucleus
  - Shows the causal factor for chemistry
- ✓ There are many more implications and consequences of SAM

### **Potential Implications**

Plasma Physics, Astrophysics and Cosmology;

Better understanding of the nuclear structure;

Better Understanding of chemistry;

Nuclear Fission & Fusion Nanotechnology (even smaller?) Radiometric dating

**Transmutations and** 

New elements?





### Thank You...

Susan Schirott – EU Support

Mark Spann – EU Support

James Sorensen – Atom builder & Website

Jean Haffner – EU Support

Jan Emming – Text Editing

**Karen Elkins – Graphic Presentation & Feedback** 

### Edwin Kaal

### **IV.** Animation of Atom Builder Application

The imagery showing the atomic nuclei were provided by the Atom builder, Ethereal Matters LLC

